Advanced Methodology for Fuel Cycle Analysis

John C. Lee, Reuben T. Sorensen, and Jeffrey C. Davis University of Michigan

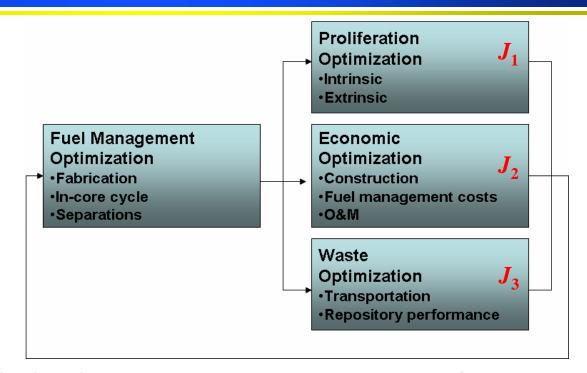
December 2005

Advanced Methodology for Fuel Cycle Analysis

- 1. Requirements for global fuel cycle development
- 2. Overall fuel cycle and system analysis
- 3. Proliferation risk quantification and minimization
- 4. Spent nuclear fuel management
- 5. Th-based LWR fuel cycle for Pu transmutation
- 6. Computational requirements for fuel cycle development

Requirements for Global Fuel Cycle Development

- Generation IV Roadmap goals for fuel cycle optimization
 - 1. Waste reduction and management
 - 2. Proliferation risk minimization
 - 3. Economical fuel cycle and energy production
- Additional Generation IV Roadmap goals
 - 1. Efficient fuel utilization for sustainable nuclear deployment
 - 2. Safety, reliability, and plant security
- Approaches for fuel cycle development
 - 1. Development and optimization of diverse fuel cycle options
 - 2. Testing and verification of alternate fuel forms
 - 3. Development of spent fuel reprocessing techniques
 - 4. Global/regional agreement for nuclear materials safeguards



Overall Fuel Cycle and System Analysis

 Optimize fuel cycle objective function:

$$J = \sum_{i=1}^{3} w_i J_i(x)$$

• Weights w_i balance overall fuel cycle cost.

• Fuel Management optimization generates system states *x* for use in Proliferation, Economics, and Waste optimizations.

$$x = [m(\mathbf{r}, t), f(m), g(m),...]$$

 $m(\mathbf{r}, T) = \text{EOC}$ discharge fuel vector
 $f(m) = \text{intrinsic}$ proliferation risk attribute
 $g(m) = \text{waste}$ attribute

Proliferation Risk Calculation

• Intrinsic proliferation risk measures utility as a weapon:

$$p_{\rm int} = \sum_j u_j(m_j)$$

 m_j = intrinsic proliferation attribute j, e.g., fissile enrichment, separability

 u_i = untility function for proliferation attribute j

• Extrinsic proliferation risk measures, via dynamic event tree, vulnerability through proliferation barriers:

$$p_{risk} = \sum_{k} p_{ext,k}(p_{\rm int}) c_k$$

 $p_{ext,k}$ = probability of penetrating barrier k

 c_k = consequence of penetrating barrier k

Intelligence Diversion Recovery	Weaponization	Detection	Consequence
---------------------------------	---------------	-----------	-------------

Proliferation sequence

• Evaluate J_1 as time integral of p_{risk} and/or at the most limiting process and time.

Limit Surface and Proliferation Risk Quantification

• Obtain system state **x** for acceptable proliferation risk in terms of risk-significant attributes, e.g., fissile enrichment:

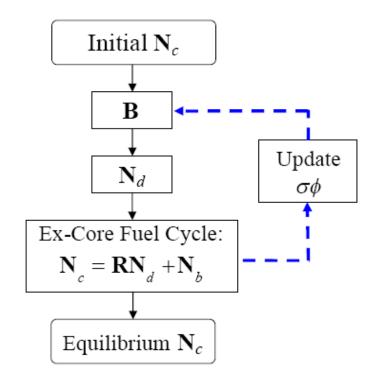
$$g(\mathbf{x}, t) < g_{\text{max}}, t \in \text{mission time}$$

 $\Rightarrow \text{limit surface} = \{ \mathbf{y} = h(\mathbf{x}) \mid g(\mathbf{x}, t) = g_{\text{max}} \}$

• Determine proliferation risk for the system, at the most limiting point in the system performance, with uncertainty represented through pdf $f(\mathbf{x})$:

$$p_{\text{risk}} = \int [g(\mathbf{x}) - g_{\text{max}}] f(\mathbf{x}) d\mathbf{x}; g(\mathbf{x}) > g_{\text{max}}$$

- Limit surface may be mapped through Alternating Conditional Expectation algorithm.
- ACE performs *conditional* regression of independent variables x and dependent variable y iteratively to obtain optimal transformations $\theta(y) = \phi(x)$, with local variation represented by $\phi(x)$ and global variation by $\theta(y)$.


Spent Nuclear Fuel Management

- Open and closed fuel cycles
 - 1. Once-through LWR uranium cycles
 - 2. One recycle of spent fuel Pu in MOX: MA/FP vitrified and discharged MOX fuel in storage
 - 3. Multi-tier thermal and fast reactor cycles
 - 4. Alternate fuel forms for multiple LWR recycles: (Th-Pu)O₂ for enhanced Pu/TRU transmutation
- Impacts of P/T of spent fuel
 - 1. Reduction in waste volume
 - 2. Economic penalty: >\$1,000 per kg HM reprocessing
 - 3. Increased proliferation risk
- Optimal fuel cycle: balance between proliferation risk reduction and other goals

LWR Equilibrium Cycle for Fuel Management

LWR Equilibrium Cycle Methodology

Microscopic reaction rates comprising **B** are iterated until **B** and N_c converge

• Equilibrium cycle is calculated for direct comparison between different reactor designs.

N_c: charge vector

N_d: discharge vector

 N_b : blend down vector

$$N_d = BN_c$$

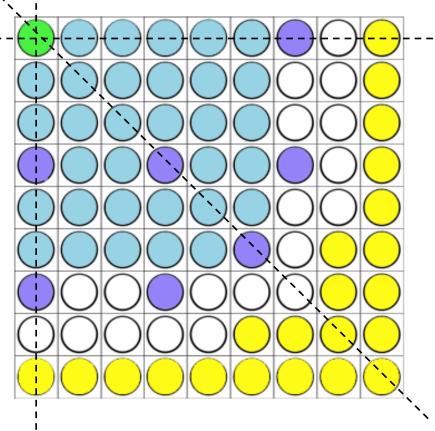
B = transmutation matrix

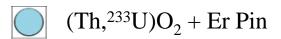
R = reprocessing matrix

• Minimize objective function y set to total EOC fissile inventory:

$$\min \left\{ y = \int_{V} m(\mathbf{r}, T) d\mathbf{r} \right\}$$

subject to the power peaking


constraint
$$p(\mathbf{r}, t) \le p_{\text{max}}$$


Alternate LWR Cycle: Th-Pu MOX as an Example

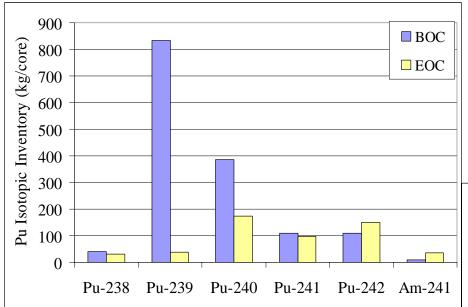
Thorium-Based Mixed-Oxide (TMOX) Assembly

Standard 17x17 PWR assembly with 33% MOX loading

- Natural Th serves as the host for Pu in the MOX
- TMOX not only stabilizes Pu inventory, but consumes Pu
- Denaturing Th with ²³⁸U reduces ²³³U proliferation risk

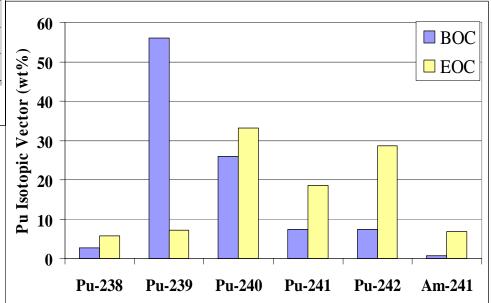
 $(Th,^{233}U)O_2$

(Th,Pu)O₂ MOX Pin


Guide Tube (GT)

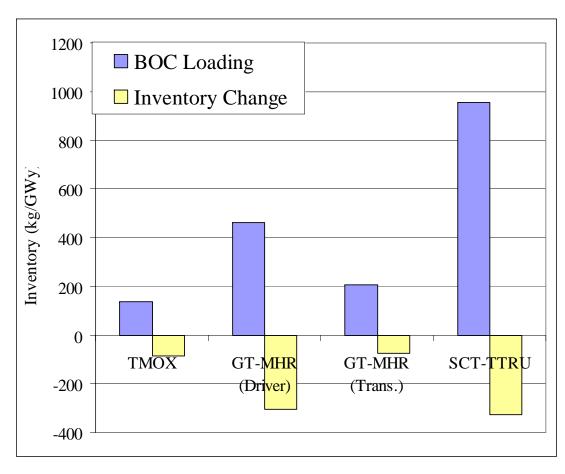
Instrument Tube (IT)

Once-Through TMOX Pu Destruction Capability


Pu Isotopic Inventory

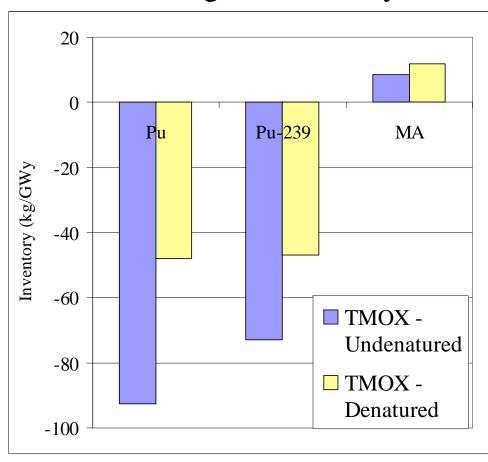
With **Zero** ²³⁹Pu production, TMOX allows for a deep burn of the initial Pu loading, rendering it useless for weapons proliferation.

95 % ²³⁹Pu destruction and70 % total Pu destruction


Pu Isotopic Vector

TRU Recycling Comparison

BOC TRU loading and depletion


TRU = Np + Pu + Am + Cm

- UMOX: Net production of Pu
- By not using ²³⁸U, the TMOX configuration destroys approximately the **SAME** amount of Pu produced in the current UO₂ fuel cycle!
- GT-MHR: 98% fractional ²³⁹Pu depletion; 70% fraction Pu depletion.
- GT-MHR requires an additional separation step for the transmutation fuel.
- Th-based fuel in fast reactor accommodates full TRU vector.

Effect of Denaturing on TMOX Performance

Net Change in Inventory

- Additions of natural U deteriorate the Pu depletion capability.
- Natural U also leads to a larger MA production.
- Need to develop denaturing strategies that will mitigate the proliferation concern of ²³³U without having to compromise Pu depletion.

Sacrifice Pu depletion and waste reduction for proliferation resistance

Computational Requirements for Fuel Cycle Optimization

- Need to optimize the entire fuel cycle, satisfying goals for minimizing proliferation risk, repository burden, and economics, in addition to traditional incore fuel management.
- Denatured TMOX cycle illustrates that the optimization task has to resolve conflicting objectives, e.g., TRU depletion and minimizing proliferation risk.
- Significant improvements to DANESS and NFCSim are necessary to perform realistic optimization of incore and excore processes and repository performance.
- Proliferation risk quantification and repository performance assessment via limit surface, representing a dynamic event tree for back-end fuel cycle, is similar to the NUREG-1150 severe accident assessment task.

